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A comprchensive, up-to-date review is presented of predictive relationships for the terminal, free-fall velo-
city of solid particles falling in an infinitc Newtonian fluid. The study explores accuracy of the implicit
and explicit cquations in terms of the drag coefficient and the terminal velocity. Problems of predicting the
terminal velocity of non-spherical, isometric as well as non-isometric, particles are discussed.

1. INTRODUCTION

A situation, when there is the need to deal with the motion of particles in fluids,
frequently occurs in chemical engineering problems. This phenomenon is of major
importance in sedimentation, fluidization and in many other technological opcrations.
The terminal or {ree-fall velocity of an isolated particle in an infinite fluid figures in
most of the corrclations for entrainment or clutriation of particles from the fluidized
bed 2. Such a quantity is also nceded in gas and liquid cyclone design, crystallization
and in other arcas of chemical technology.
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It has been, therefore, a frequent subject of investigation of mostly cxperimental
studics. In the past decades, a considerable effort has been made to determine by expe-
riment the terminal velocity and drag cocfficient of freely falling spheres. Attempts at
developing theoretical relationships betweeen the drag coefficient and the Reynolds
number have been only partially successful. The application of such equations is limi-
ted to a region of low Reynolds numbers. In contrast to flow in a tube, both the
resistance due to skin friction and that due to form drag effect flow around a sphere.
The transition from the laminar to the turbulent region is not as well defined for flow
around the sphere as it is for flow in a tube.

The present work has been undertaken with the objective of exploring the accuracy
of the predictive expressions for the terminal velocity proposed in the literature. The
comparison made also includes some of original work of the authors and their
coworkers. At the same time it is hoped that this review provides a means for accurate
and rapid prediction of the terminal velocity.

The findings given below on the terminal velocity apply in the absence of wall
cffects or concentration cffects. In general, these effects are negligible for column-to-
particle diameter ratios larger than about 100 and for volume concentrations lower than
approximately 0.1%.

2. THEORETICAL

2. 1. Physical Considerations

The balance of forces acting on a spherical particle which is falling freely through an
infinite {luid of constant density and viscosity is expressed as follows:

Gravitational force - buoyancy force - drag force = acceleration force . (1)

Such a situation is depicted in Fig. 1. The drag force can be written in terms of a drag
coefficient Cp, the projected arca perpendicular to the fluid flow A, and the incrtia of
the fluid

F = ChA, pU2. %))
Fora spherc A, = JIL{[':/4 and we get

F = CpondypU¥8. €)
Then Eq. (7) can be expressed algebraically

T T 1t
—(;d; (ps-pDg - CDE(I’E;)‘UQ = Ed; p,dU/dt. )
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When a particle attains its constant, free-fall or terminal velocity the accelerating force
is zcro, (dU/dt) = 0, and the weight of the particle is exactly balanced by the sum of the
buoyancy and the resisting force caused by the flow of fluid around the particle. At
such a steady state the force balance given by Eq. (4) can be recast into the
dimensionless form as

CpRe? = 4Ar/3, Q)
where
Re, = U, pilug (6)
is the Reynolds number and
Ar = dipe(p - p) g/1¢ @]

is the Archimedes number.

2.2. Laminar Flow, Stokes Region (Rey < 0.1)

The simplicity of Egs (2), (3) and (5) is, in practice, only illusive. In gencral, the drag
cocfficient Cp is a complex function of the flow conditions, i.c. Cp = Cp(Re).

Under viscous or laminar (strcamline, creeping) flow conditions (Re, < 0.1) Stokes®
demonstrated mathematically for settling spherical particles that the force opposing
motion through a fluid is proportional to the viscosity of the fluid and is given as

F = 3napd U, the Stokes law, Re < 0.1. ®)

A Q Form‘ drag

] ISkin friction
Acceleration
force Buoyancy
Gravitational
orce

Fic. 1
Forces acting on a rigid, spherical particle falling
through an infinite, homogencous fluid
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The steady state force balance, (dU/dt) = 0, on the particle in the Stokesian region
then leads to

U = &(p-p)g/18 1y, Re < 0.1 Q)
or
Re, = Ar/18, Re, < 0.1. (10)
Combining Egs (3) and (8) provides for the drag cocfficient
Cy = 24/Re, Re, < 0.1, (11)

which is analogous to the expression for the friction factor for laminar flow in smooth
pipes (16/Re).

It should be noted that the Stokes law given by Eq. (8) is an analytical solution of the
cquation of motion and the continuity equation for Re; < 0.1. No theoretical predictions
of the drag cocfficient can be made at higher values of the Reynolds number’. The
dependence of the drag cocefficient on the Reynolds number for Re, > 0.1 is, therefore,
deduced from experimental measurcments. :

In free fall particles with terminal Reynolds number Ref < 0.1 attain their terminal
velocity within fractions of a second. On the other hand, the time and distance taken to
rcach the terminal velocity become considerable for larger particles. The procedures for
calculating the acceleration time and distance are reported by Heywood®.

In experimental work, settling columns have to be large enough also in cross section
to climinate or minimize wall effects. This is of particular importance in the highly
turbulent region where larger particles including spheres deviate considcrably from a
vertical path. For example Pettyjohn and Christiansen® employed a 0.5 m square
scttling column for the experimental measurements in turbulent flow and a 12.5 cm i.d.
column for viscous or laminar flow cxperiments.

2. 3. Turbulent Flow, Newton Region (1 000 < Rey < 2. 105)

In this flow region, the resistance force acting on a sphere is approximately proportio-
nal to the squared velocity of fluid flowing around the sphere. No satisfactory theo-
retical expressions for the drag force have been developed and the frictional loss has to
be found by experiment.

A single value of the drag cocfficient is often given as a first approximation in turbu-
lent flow:

Cp =~ 0.44, 1000 < Re, <2 . 105, (12)
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As can be scen in Fig. 2 the drag cocfficient is not actually constant in the Newton
region. The dependence Cpy = Cp(Re,) exhibits a feeble minimum of about 0.385
between Rep = 2 000 and 5 000. The curve in Fig. 2 represents a large volume of
experimental findings on the flow around a sphere. In this system, there is no clear
transition from laminar to turbulent flow as it is for fluid flow in a tube. The discharge
of vorticity increases in rate and irrcgularity with increasing Reynolds number, and
cventually the wake becomes a completely turbulent mass of eddies and vortices.

The shape of the curve log Cy, versus log Re, is well established, based on numerous
experimental data. The slope of the curve gradually changes from -1 to zero as the
Reynolds number increases from about 107210 2 . 10%. At Re = 2 — 3 . 10° turbulence
develops to the rear of the sphere and the value of the drag cocfficient falls to about 0.1 - 0.2.

Inserting Eq. (12) into Eq. (5) we get after rearrangement an approximate expression

4 du (ps - pl) g 172 5
- ? . 107, 3
U, = (3 TP o ) : 1000 < Re,<2.10 (13)

As indicated by this cquation the terminal velocity is much less dependent on particle
size than in the laminar regime (see Eq. (9)). The viscosity of {luid does not occur in
the equation for U, at all.

2. 4. Transitional Flow, Transition Region (0.1 < Rer < 1 000)

In most practical situations and applications of fluidized beds the particles of interest
have their terminal velocities within the transitional regime and an accurate as well as
rapid method of prediction is needed.

As mentioned above numcrous attempts have mostly failed at developing theo-
retically based expressions to relate the drag cocfficient with the Reynolds number.
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Considerable attention has been paid, therefore, to the experimental determination of
the terminal velocity and drag coclficient for free-settling spherical particles. With the
usc of mcasured data on the free-fall of spherical particles in a broad spectrum of
fluids, the drag cocflicient is plotted as a function of the Reynolds number in Fig. 2. As
shown in this figure the so-called standard drag curve has three broad regions
corresponding to the different flow regimes as mentioned above. A sharp decreasc of
the curve at Re = 2. 107 is linked to a state when the boundary layer breaks off.

In essence, what is presented below are the results of cfforts to find a mathematical
approximation to experimental data collected on the drag cocfficient of spheres. A
number of empirical relationships are reported in the literature. A reader should always
be careful about the range of their applicability.

Since the drag coefficient Cpy is usually a non-trivial function of the Reynolds
number which includes the terminal velocity, its estimation mostly depends on
successive approximations. In order to climinate the need of possibly tedious iterations,
a convenient, but hardly accurate procedure was used in the past®. This method is based
on the fact that the right hand sides of the dimensionless equations (/4) and (15)

4 dipp-p)g

CpRel = 3 " (14)
t

Co _ 4 p-p) g (1)

Re, 30 97 U ’

do not include the terminal velocity and the particle size, respectively. To find the
terminal velocity of a given particle or the particle size corresponding to a certain
terminal velocity, the caleulated plots of CpRe? or Cpy/Re, versus Re shown in Fig. 3 are
cmployed.

In some cases it may be convenient but less accurate, to work with simplificd
expressions for Cpy at medium and higher Reynolds numbers. In the transition region
the drag cocfficient can be very roughly approximated® as

Cp = I185/RM 2 < Re,<5.10%. (16)
Among well-known, and commonly employed expressions, for example in fluidized
bed modelling, there is the semicmpirical equation of Schiller and Neumann® which is

valid over the range 0.1 < Re, < 500 = 1 000.

Cy = 24(1+0.15R)/Re,, 0.1 < Re, < 500 — 1 000 . (17)
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Khan and Richardson” have comprehensively reviewed the various empirical relations
proposed for Cy by a number of workers in the ficld. They represent the available
experimental data over only restricted ranges of the Reynolds number.

In some situations, the cffects of the walls of the column and of neighbouring
particles have to be taken into account®, Goldburg and Florsheim® observed fluctuations
in the speed as well as in the direction of falling particles. They suggested that zig-zag
or spiral paths of particles were associated with the onsct of free stream turbulence.

3. PREDICTING TERMINAL VELOCITIES

3. 1. Predictive Implicit Relationships for U,

The drag cocfficient, Cpy, in Eq. (5) is a complex function of the Reynolds number, Re,,
and then an iterative solution of Eq. (5) together with an expression for Cyy = Cy(Re))
must be sought. Elementary technique such as interval halving has proven to be effective.

Some years ago Clift et al.'® developed an cmpirical correlation for Cpy = Cp(Re,)
which is based upon a critical review of published experimental data. This correlation
consists of a number of polynomial equations with a large number of fitted constants.
Clift et al.'" believe that this set of segment correlations presented in Table T is the best
approximation to the standard drag cocfficient for spheres at Re, < 100,

The need for such a complicated, multisegment regression equation was questioned
by Flemmer and Banks'! and by Turton and Levenspicl'®. The authors also proposed
empirical, but very much simpler correlations for the drag cocfficient of the freely
falling spheres containing several fitted parameters. These relationships have also been

T T L

\\ CD
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T
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FiG. 3
Dimensionless groups (.‘I)Re,z and Cp/Re,

plotted as functions of the Reynolds

2
number
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deduced from measured data and are given below. Flemmer and Banks!! have put
forward an cquation of exponcential form with five fitted parameters

Cph = 24. 1()’5/Rc'l, 18)
where

E = 0.261Rel3% - 0.105 R4 - 0.124/[1 + (log, Re)?] , (19)

Rer< 3. 105,

Turton and Levenspicl'? have presented a correlation which has the form of a single
cquation also with fitted parameters

Cp = 24(1+0.173Re"557)/Re, + 0.413/(1 + 16 300 Re[-%) | (20)

Re<2.105.

As can be scen the first term on the right hand side of Eq. (20) is very similar to the
semicmpirical expression of Schiller and Neumann® given by Eq. (17). Substituting Eq.
(20) in Eq. (5) and rearranging gives Eq. (21)

ReM + 10.053 R + S8.111 R + 163 868 Rel0%7 -
t t t t

— 3.22841ArRe!" + 947215Re, - 52623.1Ar = 0. 3)

TasLE |

Drag cocfficient correlations for the spheres proposed by Clift and Girace'®

Corrclation” Range of applicability
Cp =3/16 + 24/Ke Re s 0.01

logio [(CpRe /24) - 1] = =0.881 + 0.82w - 0.05 w? 0.01 < Re s 20

i Cp = 24 [1+ 01315 RSO -0 g,

logio [(Cike /24) = 1] = =0.7133 + 0.6305 w 20 < Re s 260

e Cp =24 (1 + 0.1935 RO ke

logio Cp = 1.6435 = 11242 w + 0.1558 w? 260 < Re s 1.5 . 10°
logio Ciy = =2.4571 + 2.5558 w - 0.9295 w? + (.1049 w' 15,10 < ke s 1.2 10"
logio Cp = —1.9181 + 0.6370w - 0.0636 w* 12, 10" < Re s 4.4 .10
logoCpy = =4.3300 + 1.5800 w - 0.1546 w* 4410 < Res 333.10°

a

w o= log, Re.
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The form of the polynomial Eq. (21) suggests a complicated behaviour of the function
Re, = Re(Ar).

All the authors'® = 12 ¢laim that their own cxpression for the drag cocfficient is the
best correlation for the available data in the subcritical regime (Re, < 2 . 10°). In order
to compare these equations, we have made systematic computations of the drag coeffi-
cient, Cp, for the Reynolds numbers ranging from 1 to 10° with the aid of these three
correlations. The relative differences between the individual predictions and their mean
values are presented in Fig. 4. As can be scen, the differences in Cy are practically
always less than 4%, and these three corrclations are equivalent from the standpoint of
accuracy. The corresponding relative differences in the Reynolds number can be esti-
mated from the expression

ARe, 1 = (1+AC/Cp)7

= 22
Re, (1+ACpH/Cp)'? 22)

that has been deduced from Eq. (5). A deviation of 4% in Cpy leads to an crror of less
than 2% in Re,. All the three correlations exhibit a flat minimum (Cp, = 0.388 - 0.393)
in the range of the Reynolds numbers between 3 000 and 5 000. It can be stated that all
the expressions provide accurate description of Cy over the entire practical range of the
Reynolds number, i.c. for Re, < 2. 10%.

Using the Turton and Levenspicel correlation (20) we have made systematic
predictions of the free-fall conditions from Eq. (21) for sclected values of the Archi-
medes number in the range between Ar = 1 and 4 . 107, The estimated values of the
Reynolds number, Re,, as well as those of drag cocfficient, Cpy, are given in Table 11 It

A%

IiG. 4 -4
Relative deviations of the drag cocfficients of sphe-
res A predicted by different correlations from their
mean vatue. 1 Clift and Grace'® 2 Flemmer and -8

e . 2
Banks'': 3 Turton and chvnspu-l]'
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970 Hartman, Yates:

is believed that these results are reliable representation of the free-fall conditions of

spherical particles.

3. 2. Predictive Explicit Expressions for U,

With the advent of personal computers there is no scrious obstacle that solution of the
cquations needed must be sought using a numerical technique. Nevertheless, attempts
have been made to develop explicit formulae that would make it possible to circumvent
the iterative solutions of Eq. (5) together with an expression for the drag coclficient as

a function of the Reynolds number.

Zigrang and Sylvester™ proposed an explicit equation for particle scttling velocities

in liquid—solid systems in the form of the quadratic

TasLe 1l

Free-fall conditions predicted for spheres with the use of the Turton-Levenspicl correlation'? for the drag

coefficient

Ar Re, Ch Ar Re, Ch Ar Re, Cp

1 0.054178 45425 5,100 14.023 33002 | 9. 10" 454.52  0.58086
2 0.10636  233.53 6.10° 16078 30948 | 1.10° 434.60  0.56777
3 0.15849  159.24 7100 18.028 28717 | 2.10° 73340 0.49578
4 020927 121.78 8. 10° 19.891 26060 | 3.10° 92893 0.46355
5 0.25930 99.153 | 9.10°  21.680 2.5531 4.10° 10952 0.44464
6 0.30864 83982 | 1.10° 23404 24342 | 5.10° 12422 0.43204
7 (135743 73.056 | 2,100 33312 18168 | 6.10° 13751 0.42308
8 0.40569 64810 | 3.10° 50720 15549 | 7.10°  1497.1 0.41642
9 0.45335 58387 | 4.10°  61.701 14009 | 8.10° 16105 0.41125
10 0.50059 53208 | 5.10° 71716 12962 | 9.10° 17168 040714
20 0.95173 20440 | 6.10° 81013 12189 | 1.10° 18170 0.40386
30 1.3738 20194 | 7,100 89.750 11587 | 2.10°  2615.1 01.38993
40 1.7747 16,034 | $.10°  98.030 L1100 | 3,10 32136 0.38733
50 2.1586 14308 | 9.10° 10593 10694 | 4.10° 37097  0.38754
60 25287 125110 | 1.10" 11350 10350 | 5.10°  4141.1 0.38876
70 2.8867 11.200 | 2.10"  177.69 084458 | 6.10° 45272 0.39033
80 3.2344 10196 | 3.10"  2290] 075674 | 7.10°  4879.3  0.39203
90 3.5730 9.3997 | 4. 10" 27549 0.70273 | 8.10° 52048 0.39375
1.10°  3.9033 8.7513| 5. 10"  316.61 0.66506 | 9.10° 55086 0.39546
2,100 6.8824 5.6297| 6.10" 35447 063669 | 1.107 57945 0.39711
3,100 94788 44520 7.10"  389.77 061436 | 2.107 80629 0.41019
4.10°  11.836 38071 8. 100 42301 059611 | 4.10" 11199 0.42525
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U - Qa+b)U +a* = 0, (23)

where the cocelficients @ and b are given as

) = pp) g d )2
a = 1.8329 ((—'-:)‘#ﬂ) , (24)
£
ul_ 172
= 7.619 . S5
b = 76l ()(f’rdl») 25)

Equations (23) — (25) arc bascd upon the work of Barnca and Mizrahi'* and that of
Barnca and Mednick!® on sedimentation and fluidization in liquid—solid systems. This
general correlation was originally proposed to compute the scttling velocity of the
interface that develops during gravity sedimentation of monodisperse particles in diffe-
rent liquids. In its limit when the volume fraction of solids is equal to zero, the above
expressions give the terminal velocity of an isolated spherical particle. With some
cffort the original equation of Zigrang and Sylvester can be rewritten into the
dimensionless form as

Re, = 1.8329Ar72 4 29025 - (106.4Ar'? + 842.44)12 (26)

Having introduced the dimensionless diameter of the sphere defined by Eq. (27)

1/3 y e (p. = )\ 143
dr = (—Z—cl,ReE) - dl,(————~“‘(’; “)) 27)
My

and the dimensionless terminal velocity defined by Eq. (28)

U 4 R(’l 173 U pt; 173 (25’)
t (3 Cn) el e)) '

Turton and Clark!'® have proposed an empirical correlation of another form

1 1.214
U = (29)

1\ . 0321 0.412
a2 d’

Collect. Czech. Chem. Commun. (Vol. 58) (1993)
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Equation (29) represents a weighed combination of the asymptotic relationships for
very low and very high Reynolds numbers that is capable of describing the complete
range of data in the subcritical region. With the use of the Reynolds and Archimedes
numbers as variables

U' = Re/Ar'”? (30)

da = Ar'”? (€2))
the Turton and Clark equation can be recast into the form
Re, = Ar'3/[(10.82/Ar%% 4+ 0.6262/Ar"137)1-214] | (32)
Rey<2.105.

Wessclingh!'” has put forward a similar interpolation formula which also covers the
entire region of the flow conditions and can be rewritten in terms of Re,and Ar as

Re, = Ar'3/[(13.48/Ar% + 0.6074/AF%15)1-101] (33)

Rer<2. 105,

18,19

In a recent work of ours™ ") we have developed a polynomial equation for the free-

fall conditions of a single particle

log,,Re, = P(A) + log,,R(A), Ar<10%, 34
where
PA) = [(0.0017795A - 0.0573)A + 1.0315]A - 1.26222 (34a)
R(A) = 0.99947 + 0.01853sin (1.848A - 3.14) (34b)
and
A = log,Ar. (34¢)

Accurate solutions of the polynomial cquation (27) given in Table I1 have been
cmployed in the least-squares fir that Ieads to Eq. (34).

The comparison of the measured terminal velocities of the glass spheres falling in
dimethyl phthalate!™ and given in Table 1 with the estimates according to Egs (26),
(32) and (3+4) is shown in Fig. 5. It is apparent from Fig. 5 that the correlation of

Coliect. Czech. Chem Commun. (Vol. 58) (1993)
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Zigrang and Sylvester underpredicts somewhat the terminal velocity. The relative diffc-
rences change from 4.2 to 6.2%. The corresponding relative deviations of the equation
of Turton and Clark vary from +3.2% at Ar = 141 to -5.2% at Ar = 5 720. The propo-
sed relationship (34) fits to the experimental data points with an exccllent accuracy of
+1.7 to -1.3%.

Very good agrecement between the measured terminal velocitics and the predictions
of Eq. (34) has also been reported by Hirata and Bulos?’ for other liquid—solid systems.
Ncbrensky?! has recently proposed a slightly different form of Eq. (34).

The explicit expressions for the terminal velocity (26), (32), (33) and (34) can also
be viewed as more or less modificd forms of a compilation of experimental data on the
drag cocfficient of spheres. In order to compare the cxplicit predictive equations, the
values of the drag cocfficient have been computed from the respective correlations with

TasLe HI
Measured terminal velocities of the glass spheres falling in dimethyl phlhalalcls and the predictions
of explicit Eq. (3). Propertics of dimethyl phthalate at 25 °C: density, pp = 1 189 kg m; viscosity, jig =
13.23 mPa s

Solids A B Cc D E F

dp, mm L.119 1.201 2.046 2.504 3.220 4.080

ps. kg m™3 2703.7 2703.7 25323 2589.8 2529.6 24535

Ar 141.42 174.75 766.71 14643 2981.7 57200

Ui exp., m s7! 0.0516 0.0564 0.1046 0.1357 0.1738 0.2134

Rer exp. 5.189 6.088 19.234 30.538 50.205 78.249

U, calc.. m s7! 0.0507 0.0562 0.1035 0.1359 0.1751 0.2163
80,

Rey

401

FiG. 5
Comparison of the terminal velocities at ¢ = 25 °C
measured on the glass spheres — dimethyl phthalate %
system with the predictions of the explicit rela-
tionships: O experimental data poinls's; 1 Zigrang

3o .
and Sylvcslcrl’: 2 Turton and Clark'®; 3 Hartman ct
18,19 o

al
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the aid of Eq. (5). Such estimates have been compared with the values of the drag
cocfficient calculated with the use of the accurate solutions presented in Table 11. The
relative deviations of the respective predictions of Egs (26), (32), (33) and (34) are
plotted as functions of the Archimedes number in Fig. 6.

The cquation by Zigrang and Sylvester' shows a systematic crror and the largest
deviations. With respect to the primary purpose of the original correlation, to predict
the scttling velocity of solid—liquid suspensions, this lower accuracy scems to be quite
understandable. Both equations by Turton and Clark'® and by Wessclingh!”show a very
similar behaviour. Their mean relative deviations amount to 11 and 10%, respectively.
The maximum differences do not exceed =22 and -20%, respectively. As can be seen
in Fig. 6, cxplicit relationship (34) provides an accurate description of the drag cocffi-
cient over a broad range of Archimedes number (i.c., Ar < 4. 107). The average devia-
tion amounts to = 2.6% and the maximum deviation is 6.2%. The corresponding
relative differences in Reynolds number can be estimated with the aid of Eq. (22). The
maximum deviations of Eq. (32) (-22%), Eq. (33) (-20%) and Eq. (34) (6.2%) in the
drag coefficient lead to maximum crrors of less than 13%, 12% and -3%, respectively,
in the terminal Reynolds number. Although Eq. (34) may appear somewhat lengthy, its
form is very convenient even for plain pocket calculators.

Having tried several forms of correlating equation, Khan and Richardson” have found
as satisfactory representation of the available experimental results the following simple
explicit expressions

Cp = (25RO 4 0.36 R )M (35)

R(,l = (233 Ar(),()lR - 1.53 Ar—(),()]())l}.} (36)
Q054 a9 m Re gn
20 T T T

Fii. 6
Relative deviations of the drag cocfficient A esti-
mated from the explicit relationship for the particle
terminal velocity: 1 Zigrang and Sylvcslcrn: 2

Turton and Clark'®; 3 Wcssclingh”: 4 Hartman et
18,19
al.’™

Collect. Czech. Chem. Commun. (Vol. 58) (1993)
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Ar = (2.07Re7 + 0.33 ReQ64)345 37
for 1072 < Re< 3. 10°.
Al-Salim and Geldart?2 have suggested an empirical relationship between Re, and Ar
1424 I I t

that is valid over the range 0.1 < Re, < 1 000. With respect to its length this expression
is not given in the text.

4. INFLUENCE OF TEMPERATURE AND PRESSURE ON THE TERMINAL VELOCITY

Numerous industrial processes involve the units for contacting of gases with solids of
widely diffcerent size. Such operations, usually accompanied by chemical reactions, arc
mostly carried out at clevated temperature and pressure.

An cffect of temperature on the terminal velocity in the Stokes region (small
particles) is indicated by Eq. (9)

U, -~ u;‘ Re <0.1. 38)
Since the viscosity of gas markedly increases with increase in temperature,

Moivogen = 1.5.107T"9/(123.6 + T) (39)

Wi = 1.81.107% (7/293)066 (40)
the terminal velocity decreases with increasing temperature in laminar flow
U . TS _ T, Re,<0.1. 1)

As suggested by Eq. (13) for the Newton region (large particles), the free-fall velo-
city is inversely proportional to the square root of the gas density

U ~ p;"?, 1000 <Re, <2.10%. (#2)

The cffect of temperature (and pressure) on the density of gas can usually be appro-
ximated from the cquation of state of an idcal gas

Py 0.1203MP/T 43)

Pair 3489P/T. (44)
With respect to Eqs (42) — (44), it is apparent that
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U ~ T2, 1000 <Re, <2.10%. 45)

In other words, increasing the temperature will cause an increasc in the terminal
velocities of particles falling in the Newton region.

In the transition region (0.1 < Re < 1 000), the terminal vclocity of particles falling
in a gas is proportional to the power of the absolute temperature ranging between -1
and +0.5

U ~ T -T1%5, (46)

This is the same range as in the case of the minimum fluidizing velocity. As follows
from the definition, the relative change of the free-fall velocity with temperature is the
sum of the partial changes in the Reynolds number, Re,, gas viscosity and gas density.
Relationship (46) indicates that the tesminal velocity is a nonlincar function of tempe-
rature which can exhibit an extreme.

Some results of the systematic calculations in the transitional region for air are worth
mentioning. There is approximately 35-fold decrease in the Archimedes number as the
temperature increases from 0 to 1000 °C. The terminal velocity of small particles (d), < 0.2
mm, p, = 2 500 kg m~*) monotonously decreases with the increasing temperature, i.c.
(dU/dT) < 0. On the other hand, the free-fall velocity of larger particles (d, > 0.8 mm,
p, = 2 500 kg m™") monotonously increases as temperature is increased from 0 to 1000 °C,
i.c., (dU/T) > 0.

Some of the results computed with the aid of Eqs (34), (40) and (44) arc plotted in
Fig. 7. As can be scen, the upper curve in this figure exhibits a distinct maximum at
approximately 350 °C. When the particle size and/or particle density increasc, the
maximum on the curve U, = U(T) moves towards high temperatures. The compu-

FiG. 7
I~ T Dependence of the terminal velocity on temperature
1 for particles of different size predicted from Eq.
5 I s 1 1) - y m=3 dium: ai -
0. 1 00 (30: pg = 1 500 kg m™, medivm: air. d;, = 0.1 mm

(7). 0.5 mm (2)
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tational results also show that the maximum occurs under the conditions expressed by
Re, =26 - 30, i.c.,

dU/dT = 0; Re,=26 - 30 “7)

u ~ 1. (48)

It is of intcrest to note that this value is not very far from that given for the minimum
fluidization velocity?

dU, /dT = 0; Re

mf’

=37 - 47. #9)

mf

The nonmonotonous behaviour of the functions U, = U(T) and U, = U «(T) should
be born in mind whenever the terminal velocity or the minimum fluidization velocity at
operating conditions of interest are estimated from the values mcasured at ambicnt
conditions.

Since pg >> p, and the gas viscosity is practically independent of pressure, it can
readily be seen from Egs (9) and (13), how the terminal velocity will vary with pressu-
re. The free-fall velocity is virtually independent of pressure in the Stokes region. As
follows from Eq. (13), increasing the pressure can markedly reduce the terminal velo-
city in the Newton region.

U, ~ P2, 1000 <Re, <2.10°. (50)

S. NON-SPHERICAL PARTICLES

The resistance experienced by a particle moving in a fluid depends upon its shape and
its oricntation with respect to the direction of motion. The sphericity is usually
cmployed as the single measure for characterizing the shape of non-spherical or irre-
gular particles. It is introduced as the ratio

P = surface of sphere / surface of particle o1

at the same volume.

However, the sphericity is a theoretical concept which can only be realized
imperfectly. There is no simple generally accepted method for measuring the sphericity
of smaller irregular particles. The values given in Table 1V should be regarded as
approximate cstimates only. Obscrving the particles of interest through a microscope
and comparison with Table IV can enable a realistic value of the sphericity to be esti-

4 —

mated. Another way to find the sphericity is to use the Ergun equation®® = 28 for pressure

drop across the fixed bed or the chart of Brownell ct al.2” for randomly packed beds
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provided the porosity of the bed is known. Although the sphericity is undoubtedly a
uscful parameter, experience shows that particles with similar values of ¥ can have
different shapes.

Another parameter important for nonisometric particles is the slimness (length to
diameter) ratio. Solids of widely nonisometric shapes do not fall vertically at a constant
velocity but can follow a zig-zag path or rotate. The free orientation of non-spherical
particles moving by an unhindered fall is given in Table V.

TABLE IV
Sphericities of different bodies and particles

Particle Sphericity, 'V Particle Sphericity, WV
Sphere 1.0 Crushed particles 0.5-0.7
Cube 0.81 Pellets 0.7 -0.8
Cylinder, h =d 0.87 Wheat 0.85
Cylinder, h =5d 0.70 Corn 0.75
Sharp sand 0.65 Crushed limestone 0.55
Round sand 0.85 - 0.95 Limestone calcine 0.75
Crushed lignite 0.4 Flakes 0.2
Brown coal ash 0.53 Corundum 0.82
Crushed coal 0.65 - 0.75

TaBLE V

. . . . . 28
Free-fall orientation of nonisomeric particles

Re, Wake Oricntation

0.1-05 [rrotational All orienttions are stable when there
are three or more perpendicular axes
of symmetry

0.5 - 200 Fixed vortices Stable in position of maximum drag

200 - 500 Periodic discharge of vorticity Unpredictable. Disk and plates tend to
wobble, while fuller bluff bodies tend
to rotate

500 -3.10° Increasing disorder

3.100-2.10° Fully turbulent Rotation about axis of least

2.10° Boundary layer becomes turbulent. inertia, frequently coupled with

Wakes of rounded bodics narrow spiral translation
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In spite of apparent limitations, most predictive expressions employ the sphericity as
a correction factor. For isometric or approximately isometric particles, Pettyjohn and
Christiansen® introduced the corrections to the spherical particle equations as follows.
For the Stokes region

Uo = K [ (p,-p)g/ 181, Re <o0.1, 52)
where

K

0.843 log |, (¥/0.065) , 067<W<1. (53)

Under turbulent flow conditions, Newton’s modificd equation can be employed

d (p.-py)g 1172
R 3 Al VOF. 4 U 2.10°<Re, <2.105,  (54)
3 Cq p¢
where
Cp = 531 - 488, 0.67<W<l. (55)

For spherical particles (‘P = 1), Eq. (53) provides K = 1.0 (Re, < 0.1) and Eq. (55)
gives Cp = 0.43 (2. 10* < Re, < 2. 10%).

Under flow conditions in the transition range, 0.1 < Re, < 2 000, Pettyjohn and
Christiansen® recommend that the curves Cy = Ci(Re,, \P) given in their study be uscd.
However, simple interpolation scems to be more feasible and more accurate than repea-
ted manipulations with the charts given in logarithmic scales. The terminal Reynolds
number, (Re)yp, and the terminal velocity, (U, are predicted for a sphere having the
same d, as a given isometric particle with the aid of e.g. Eq. (34). If the sphericity of
the particle, ', is not known, it can be approximately estimated from Table IV and the
values of the coefficients K and Cy are calculated. It can casily be scen that

U/(U)g, = K at Re =0.1 (56a)

sph

and

U/(U)yy = (0.43/C)2  at Re,=2000. (56b)

sph
The interpolation between these points provides the desired terminal velocity

U/(U)yy = (0.43/Cp)V2 +

sph

+ [K = (0.43/CR)'?) [(2000 - (Re),,,)/ (2000 - 0.1)] 7

sph

for 0.1 < Rey < 2 000 .
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The extent to which the results of Pettyjohn and Christiansen®

nonisomcric particles is not clcar.

Becker?® undertook an experimental study that also included nonisometric particles.
The corrclations of the inertial drag cocfficient proposed cover a broad spectrum of
shapes and oricntations. They extend over a full range of the Reynolds number.

For highly irrcgular shaped solids, the best that can be done is to detcrmine the
terminal velocity by experiment.

Alternatively, the curves in Fig. 8 can be employed for first approximations. These
curves, presented in a monograph by Levenspicl?” are based on data amasscd by diffe-
rent investigators.

can be applicd to

6. CONCLUSIONS

The terminal velocity of spherical particles falling in an infinite Newtonian fluid can
accurately be predicted with the use of any of the empirical correlations given in Table 1
and by Eqs (/8) and (20). These different expressions for the drag cocfficient of the
spheres are equivalent from the standpoint of their accuracy. The employment of the
explicit Eq. (34) climinates the need for iterative computations without a significant
loss in accuracy.

Increasing the temperature brings about a decreasce in the terminal velocity of smaller
particles and an increase of the terminal velocity for larger particles. In general, the
dependence U, = U(T) is not monotonous and cxhibits a maximum at Re, = 26 - 30 for
the free-fall in air. An increasce in pressure has very little effect for small particles and
reduces the free-fall velocity of larger particles.

Some progress has also been made with nonspherical particles. It is believed that the
realistic values of the terminal velocity of different isometric solids can be estimated.

o

(613 A2
o

FiG. 8
Chart for estimation of the terminal
velocity  of  nonspherical  particles
v’ falling through fluids®’
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In the case of highly irregular and nonisometric particles, the free-fall velocity as well
as the overall behaviour of such particles should be determined by experiment.

The author would like to acknowledge that his contribution to this paper was in part supported through
Academy of Sciences of the Czech Republic, Grant No. 17208.

SYMBOLS
A = logioAr in Eq. (37)
Ap projected arca of particle perpendicular to direction of motion, m?
Ar Archimedes number, Ar = di‘, g pps = po)/ ue
a cocfficicat defined by Eq. (24)
b cocfficient defined by Liq. (25)
Cp drag cocflicient of sphere
ACp inaccuracy in drag cocfficient
Cr coclficient of resistance defined by Eqs (57) and (55)
dy diameter of sphere, m
d* dimensionless diameter of sphere defined by Eq. (27)
F force acting on particle
g acceleration duc to gravity, m s>
K Stokes law shape factor defined by Eqgs (52) and (53)
M molecular weight, kg kmol™!
P pressure, kPa
Rews Reynolds number at minimum fluidization, Rews = U dp pritg
Rey Reynolds number at terminal velocity of particle, Rey = Uy dp pi/jg
ARey inaccuracy in Key
t temperature, °C’
r temperature, K
U superficial fluid velocity, m s™!
Uns minimum fluidizing velocity, m s™!
Uy terminal, free-fall velocity of particle, m s™!
w = logio Re
A relative deviation, %
e fluid viscosity, Pa s
pr fluid density, kg m™3
Pe gas density, kg m™?
Ps particle density, kg m™3
T time, s
W particle sphericity, shape factor
Subscripts
cale calculated
exp experimental
sph sphere
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